skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wick, Collin_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Vitrimers with self‐healing, recycling, and remolding capabilities are changing the paradigm for thermoset polymer design. In the past several years, vitrimers that exhibit shape memory effects and are curable by ultraviolet (UV) light have made significant progress in the realm of 4D printing. Herein, we report a molecular dynamics (MD) modeling framework to model UV curable shape memory vitrimers. We used our framework and compared our modeling results with one UV curable shape memory vitrimer found in the literature, bisphenol A glycerolate dimethacrylate. The comparison showed reasonable agreement between the modeling and experimental results in terms of thermomechanical and shape memory properties, along with self‐healing efficiency. It was found that during recycling, it was important for the network to percolate through a majority of the system to get reasonably high recovery stress and recycling efficiency. Once this was achieved, a topological descriptor that was found to represent the compactness of the network was identified as having a very high correlation with recovery stress and recycling efficiency for networks that percolated 70% or more of the monomers in a system. 
    more » « less